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Vahé Petrosian

Department of Physics Stanford University, 382 Via Pueblo Mall, Stanford, CA 94305-4060

Kavli Institute for Particle Astrophysics and Cosmology, Stanford University

Also Department of Applied Physics, Stanford University

Elena Orlando

Department of Physics, University of Trieste, Trieste, Italy

Also Kavli Institute for Particle Astrophysics and Cosmology, Stanford University

National Institute for Nuclear Physics (INFN) Trieste, Italy

Andrew Strong

Max-Planck-Institut für extraterrestrische Physik, Garching, Germany

vahep@stanford.edu

ABSTRACT

Gamma rays are produced by cosmic ray (CR) protons interacting with the particles at solar
photosphere and by cosmic ray electrons and positrons (CRes) via inverse Compton scattering
of solar photons. The former come from the solar disk while the latter extend beyond the disk.
Evaluation of these emissions requires the flux and spectrum of CRs in the vicinity of the Sun,
while most observations provide flux and spectra near the Earth, at around 1 AU from the Sun.
Past estimates of the quiet Sun gamma-ray emission use phenomenological modulation procedures
to estimate spectra near the Sun (see review by Orlando & Strong (2021) and references therein).
We show that CRe transport in the inner heliosphere requires a kinetic approach and use a novel
approximation to determine the variation of CRe flux and spectrum from 1 AU to the Sun
including e↵ects of (1) the structure of large scale magnetic field, (2) small scale turbulence in
the solar wind from several in situ measurements, in particular, those by Parker Solar Probe that
extend this information to 0.1 AU, and (3) most importantly, energy losses due to synchrotron and
inverse Compton processes. We present results on the flux and spectrum variation of CRes from 1
AU to the Sun for several transport models. In forthcoming papers we will use these results for a
more accurate estimate of quiet Sun inverse Compton gamma-ray spectra, and, for the first time,
the spectrum of extreme ultraviolet to hard X-ray photons produced by synchrotron emission.
These can be compared with the quiet Sun gamma-ray observation by Fermi (see, e.g. Fermi

-LAT Collaboration, 2011) and X-ray upper limits set by RHESSI (Hannah et al., 2010).

Subject headings: Cosmic Rays; transport of particles–Solar Wind: –Sun: particle emissions
–turbulence
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1. Introduction

Spectra and many other characteristics of high energy cosmic rays (CRs) have been directly observed
and investigated for more than a century by various instruments. These characteristics can be also deduced
by the radiation they produce interacting with the di↵use interstellar particles, photons and magnetic fields;
gamma-rays from decay of pions produced by interaction of CR ions (mostly protons; CRps) and from inverse
Compton (IC) scattering of low energy photons (mainly starlight) of CR electrons and positrons (CRes),
and radio radiation produced by CRes via synchrotron mechanisms. Similar radiation can be produce by
the interactions of CRs with denser objects like stars, planets and satellites. EGRET on board Compton
Gamma-Ray Observatory (CGRO) was first to detect gamma-rays from the quiet phase of the Sun (QS)
(Orlando & Strong 2008). Over the past decade the Large Area Telescope (LAT) on board Fermi has
provided a rich body of data on > 100 MeV gamma-rays during QS, which consist of disk emission due
to pion decay and somewhat extended emission due to the IC scattering of solar optical photons by CRes.
These observations have been investigated extensively, commonly using a phenomenological description of
solar modulation of the CRs (see, e.g. Abdo et al. (2011), Fujii & McDonald (2005), Moskalenko, et al.
(2006) and Orlando & Strong (2007)).

However, to the best of our knowledge, there has not been much discussion, or any detailed analysis,
of the synchrotron emission by CRes. Evaluation of the synchrotron emission during active phase of the
sun with many active regions and strong complex magnetic field structure is complicated. But during QS
periods the magnetic field in the heliosphere from photosphere to 1 AU varies fairly smoothly (approximately
following the Parker spiral structure) from B ⇠ 10 G to tens of µG (or few nT). Thus, GeV to TeV CRes can
produce synchrotron radiation from few GHz to 1015 Hz at 1 AU (B ⇠ 4 nT) and from ⇠ 1015 Hz (⇠ 1 eV)
to ⇠ 1021 Hz (⇠ MeV) near the photosphere (B ⇠ 10 G). Most of this radiation will be undetectable or fall
below the radiation produced by other mechanisms. However, recent analysis of the RHESSI observation of
the Sun (Hannah et al. 2010) during the QS phase show some robust upper limits on the flux in the hard
X-ray (HXR) range.

Our ultimate goal is to investigate the possibility of detecting synchrotron radiation during the transport
of CRes from 1 AU to the Sun and test whether the observed QS HXR upper limits can constrain this model.
This requires an accurate determination of the spectral variation of the CRes from 1 AU, where they are
observed, to the Sun. As mentioned above, past works have used phenomenological modulation approach,
application of which to the inner heliosphere is highly uncertain. As we will show, this tasks requires a kinetic
approach, which we develop in this paper. The result from such a study can also provide a more accurate
determination of the expected IC gamma-ray emission. The focus of the current paper is the transport of
CRes from 1 AU to the Sun. In subsequent papers we will address the emission characteristics.

In the next section we describe several ingredients that are needed for calculation of the spectrum of
the synchrotron and IC emission from CRes during their transport through the inner heliosphere from 1 AU
to the Sun. In §3 we discuss the coe�cients of the transport kinetic equation and in §4 we calculate the
CRe spectral variation for three models, and present equation for evaluation of radiation spectra that can
be observed at 1 AU. A brief summary and conclusions are presented in §5.

2. Synchrotron and IC Emissivity

The mono-energetic spectral emissions of relativistic electrons (mass me, charge e) with Lorentz factor
� and pitch angle ↵ (or its cosine µ = cos↵) at a distance r from the center of the Sun can be described
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by the general function k(⌫, �, µ, r) (in ergs s�1 Hz�1), which varies with r because of the variation of the
magnetic field, B(r) (for synchrotron), and photon energy density, uph(r) (for IC).

The emissivity (in ergs s�1 Hz�1 cm�3) of a population of electrons is obtained by integrating over the
electron energy (or Lorentz factor) and pitch angle distribution, N(�, µ, r) (in cm�3

�
�1, rad�1), as

⌘(⌫, r) =

Z 1

�1
dµ

Z 1

�min

N(�, µ, r)k(⌫, �, µ, r)d�, (1)

where �min � 1 is the lowest observed Lorentz factor.

The two main ingredients needed for evaluation of the emissivity are the variations of magnetic field,
B(r), and optical photon energy density, uph(r), and energy and pitch angle distribution of the CRes with
distance from the Sun.

2.1. Structure of the Magnetic Field

Over the past decades there have been several models proposed for the variation of the magnetic field
in the corona of the Sun and in the inner heliosphere (r  1 AU). Also, there have been several observations
describing the B(r) relation. In general there are large dispersion in the observed values but a power-
law form, B(r) / r

��, provides a satisfactory fit. It is generally believed that the magnetic field in the
heliosphere follows a Parker spiral with � ' 2. However, recent observations by the Parker Solar Probe
(PSP) measurements at distances 0.13 < (r/AU) < 1. or 27 < (r/R�) < 214, shows some variation
from this form with large dispersion, but on average they can be fit to a power law with � ⇠ 1.75 and
B(r = 1AU) ⇠ 38µG (Badman et al. 2021). Gopalswamy & Yashiro (2011; GY11) using observations of the
Coronal Mass Ejections (CMEs) derive the variation of the B field inside this region, 5 < (r/R�) < 25 with
� = 1.27± 0.03 and B(r = 5R�) = 0.05 G. These two nearly overlapping observations, shown by the dotted
lines on the left panel of Figure 1, can be combined as

B(r) = 0.4(r/R�)
�1.2

/(1 + r/rc), with rc = 13R�, (2)

shown by the solid black curve, which once extrapolated to the photosphere yields B0 ⇠ 0.4 G. This is
smaller than B0 ⇠ 10 G indicated by lower corona observations indicating that the profile must steepen
rapidly below 5R� as indicated by other observations and models. For example, Patzold et al. (1987) give

B(r) = 6(R�/r)
3[1 + r/(5R�)]G, (3)

shown by the dashed black line that agrees with PSP observations and steepens to B0 = 7.2 G at the
photosphere. Alissandrakis & Gary (2021) describe some radio observations and present a summary of all
past measurements. There is a wide dispersion in these measurements as well. We will use a combination of
these results in our treatment of transport and radiation of CRes.

In what follows (for the B field here and charcteristics of turbulence discussed below) we will treat the
outer region (0.1 < r/AU < 1) and the inner region (1 = r/R� < 20) separately. For the outer region we use
a fit to PSP observations and in the inner region we use the two widely di↵erent models, similar to GY11
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Fig. 1.— Left: Some analytic fits to the observed structure of the magnetic field (black lines), density (red
lines) and Alfvén velocity (blue lines). The black points are measurements from PSP (Badman et al. 2021)
The two dotted black lines show B(r) fit to PSP points and to results from Gopalswamy & Yashiro (2011;
GY11). The solid line is a fit to combination of the two given in Eq. (2). The dashed black curve is from
Patzold et al. (1987). The upper solid green and dashed black curves shows the variation of equivalent field,
Bop =

p
8⇡uop, for two models of optical photons energy density uop given in Eqs. 8 and 7, respectively.

The red curves show two models of the density from Saito et al. (1977, SMP) and Lehblanc et al. (1998,
LDB). The blue curves present three models of the Alfvén velocity obtained using (i) the Combined+LDP
(dotted), (ii) Patzold+SMP (dashed), and (iii) an average of the two (solid). The points are Alfv́en velocity
values given by GY11. The three magenta lines show the three power law forms of Eq. (4) we use in our
analysis. Right: Observed spectrum of Cosmic Ray electrons by AMS02 (filled points) (Aguilar et al.
2014) and H.E.S.S. (HESS Collaboration 2017) (open circles) at 1 AU from the Sun. The red curve shows
an analytic fit to the data consisting of a smoothly broken power-law with two breaks at energies E1 = 2.8
GeV (with index -0.4 below it) and E2 = 900 GeV (with index -4.05 above it), described by Equation (9).

and Patzold (1987) observations. These three fit forms, shown in magenta in Figure 1 (left), are

B(r)/G =

8
>><

>>:

1.0(r/R�)�1.9 0.1 < r/AU < 1

0.31(r/R�)�1.5 GY11

8.4(r/R�)�2.6 Patzold.

(4)

GY11 also give two models of density variation, n(r), due to Saito et al. (1977, SMP) and Lehblanc et al.
(1998, LDB) shown on the left panel of Fig. 1 by the dashed and solid red curves, respectively. The density
and magnetic field variation allows us to calculate the variation of Alfvén velocity, vA = B/

p
4⇡mpn, shown

by the blue curves, which is needed for the treatment of CRe transport described next. Here again we will



– 5 –

use the following two approximate models;

vA =

(
500(r/20R�)�1.2 km s�1

, r > 20R�,

vA = 500 km s�1
, r < 20R�.

(5)

2.2. Photon Energy Density Variation

CRes will encounter photons radiated by the Sun that have a black body frequency distribution with
total flux

Fbb = �SBT
4 = L�/(4⇡R�

2), (6)

where �SB is the Stephan Boltzmann constant, T is the surface temperature, and L� is the luminosity of the
Sun. In the optically thick (⌧ > 1) region just below the photosphere (r  R�) the photon energy density
uph(R�

�) = 4Fbb/c and in the optically thin region just above it the energy density of out-flowing photons
will be half of this, uph(R�

+) = 2Fbb/c. At larger distances where photons move radially the energy density
approaches to

uph(r) = L�/(4⇡r
2
c) = (Fbb/c)(R�/r)

2 for r > R�. (7)

Orlando & Strong (2007) derive the following relation describing the transition between the last two regions
as:

uph(r) = 2(Fbb/c)h(r) with h(r) = 1�
p

1� (R�/r)2. (8)

The photon energy density can be converted to an equivalent magnetic field, Bph(r) =
p

8⇡uph(r)
with Bph(R�

+) = 10.5 G. The top (solid green and dashed black) curves in Figure 1 shows variations of
Bph(r) based on Equations (8) and (7), respectively, which are significantly di↵erent at very small distances,
r < 2R�.

2.3. The CR Electron Spectrum at 1 AU

The spectral intensity, J(E, r = 1AU), of the CRes at 1 AU during the solar minimum are observed
by AMS02 (Aguilar et al. 2014) and H.E.S.S. (HESS Collaboration 2017), which appears to be highly
isotropic. Thus, the total flux F (E) = 4⇡J , which as evident from right panel of Figure 1, obeys a power law
with index p = �3.17, for the most relevant energy range of few GeV to TeV. For an analytic description,
we fit the spectrum to a broken power law with two breaks at E1 = 2.8 GeV with index p1 = �0.40 below
it, and at E2 = 0.9 TeV with index p2 = �4.05 above it:

F (E, r = 1AU) = F0
(E/E1)p1

1 + (E/E1)p1�p
[1 + (E/E2)

n(p�p2)](�1/n)
, (9)

where F0 = 0.014 cm�2 s�1 GeV�1, and n = 4 for a sharper break. The total energy flux Ftot ⇠ 0.1
GeV cm�2 s�1 is about 103 smaller than solar wind energy flux. The CRe spectral density N(�, r = AU)
(needed for calculation of the emissivity) is obtained by dividing the flux by the speed of light (for relativistic
electrons) changing E to � and E1, E2 to �1 = 1957E1 = 5.6 ⇥ 103, �2 = 1957E2 = 1.8 ⇥ 106. This gives
N0 = F0/(1957c) = 2.7⇥ 10�16 cm�3

�
�1, and total number density of Ntot ⇠ 3⇥ 10�12 cm�3, again much

smaller than the solar wind density.
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CRes with greater than GeV energy traveling from 1 AU toward the Sun will spiral around the magnetic
field lines, initially with the above spectrum, and an isotopic pitch angle distribution. During this transport
they lose energy via the synchrotron and IC processes and are scattered by turbulence in the solar wind. Their
pitch angle will also change due to these scatterings and the variation of magnetic field. These interactions
will change their spectrum as described next.

3. Transport E↵ects and Spectral Variations

3.1. Transport Equation

We first note that throughout inner heliosphere (r < 1 AU) the electron gyroradius, rg = v?�/(2⇡⌫B) =
1.7 ⇥ 103�

p
1� µ2/B cm is smaller than the size of the source, or more precisely the B field scale height,

HB = (|dlnB/ds|)�1 = 1.2r/�. Here v? = v

p
1� µ2 is the perpendicular component of the electron velocity

and ⌫B = eB/(2⇡mec) = 2.8 ⇥ 106B is the gyrofrequency, and for particles following Parker spirals we use
for the distance along field lines s ⇠ 1.2r. For isotropic distribution of pitch angles, h

p
1� µ2i = ⇡/4, and

for B(r) = B0(r/R�)�� we have

⇣g ⌘ rg/HB = 1.6⇥ 10�8
��(r/R�)

��1 ⇥ (G/B0). (10)

In the most relevant inner region, for the Pazold model with B0 ⇠ 8.4G, � ⇠ 2.6, this ratio is ⇣g = 0.6(�/106)
and = 0.002(�/106) at r = 20R� and 1, respectively. For the GY11 model these ratios are ⇣g = 0.4(�/106)
and ⇣g = 0.008(�/106), indicating that throughout most of the inner region CRes are tied to the magnetic
field lines and spiral down to the Sun along Parker spiral guide fields. Thus, inside this radius the modulation
approach is not appropriate and we need a kinetic approach. On the other hand, in the outer region with
B0 = 1 G and � ⇠ 2, ⇣g = 4(�/106) and ⇣g = 0.5(�/106) at 1 AU and r = 20R�, respectively, so that the
kinetic approach provides an approximate description of the transport. However, since most of energy loss
and emission occurs mainly near the Sun this approximation would be adequate.1 This also implies that
in the region with ⇣g < 1 we can use the gyro-phase averaged particle density distribution f(t, s, µ, E) as a
function of time, distance, s, pitch angle cosine, µ, and energy, E (and velocity v).

This distribution can be described by the following version of the Fokker-Planck transport equation.

@f

@t
+ vµ

@f

@s
� v@lnB

2@s

@

@µ

⇥
(1� µ

2)f
⇤
� @

@µ


Dµµ

@f

@µ

�
=

@(Ėf)

@E
+ Q̇(t, µ, E), (11)

where Ė is the absolute value of the energy loss rate, Dµµ is the pitch angle di↵usion rate,2 and Q̇ describes
the energy spectrum and pitch angle distribution of the injected particles at 1 AU, s = 0. In what follows,
instead of s, we use distance from the Sun, r = 1 AU � s/(1.2) or ds ⇠ 1.2dr, which implies we multiply
Dµµ, Ė and Q̇ by 1.2. Since all coe�cients of this equation (B,Dµµ, Ė, Q̇) vary on time scales much longer
than the transport time of CRes from 1 AU to the Sun, we can assume steady state, i.e. we can set @f/@t = 0,
and set the injection rate at 1 AU to Q̇(E) = F (E, r = AU), given by Equation (9), with an isotropic pitch
angle distribution. Then the spectral flux down to the Sun will be F (r, E) = vhµif(r, E) = vf(r, E)/2.

1
Note that this will also be the case for protons with � < 10

3
or energies less than 1 TeV, as is the case for electrons.

2
We ignore energy di↵usion rates, DEE , which for relativistic particles is (vA/c)2 < 10

�5
times smaller than Dµµ throughout

the heliosphere. We also ignore terms involving solar wind, Alfvén and other drift velocities, which are much smaller than the

CRe speed, v = c.
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It should also be noted that the above analysis is valid when di↵usion of particles perpendicular to the
magnetic field is small compared to di↵usion parallel to the field, described by Dµµ. Approximately, this
requires a particle gyro-radius less than its mean free path described in §3.1.3. As shown in Appendix C,
this is satisfied for �  106 throughout most of the inner heliosphere, especially in the inner regions near the
Sun where losses are most important.

We note that the kinetic approach is very di↵erent than the common use of modulation potential, which
seems to work well in the outer (r > 1 AU) heliosphere, but its extrapolation to the inner regions is highly
uncertain. As will be shown below, we obtain di↵erent spectral variation with the kinetic approach.

We now give detailed description of the transport coe�cients.

3.1.1. Energy Loss

Throughout most of the outer heliosphere the energy loss, described by the first term on the right
hand side of Equation (11), is negligible but it increases relatively rapidly with energy, and as the CRes
approach the Sun. Relativistic electrons with isotropic pitch angle distribution lose energy mainly by IC and
synchrotron processes3 with the rate (see, e.g. Eqs. 7.16 and 7.17 of Rybicki & Lightman (1980))

Ė = (4/3)c�T (�
2 � 1)ue↵ with ue↵ = uph +B

2
/(8⇡). (12)

where �T = 6.6⇥ 10�25 cm2. Replacing uph = B
2
ph(R�

+)/8⇡ and defining B
2
e↵ = B

2
ph(R�

+)+B
2 we obtain

the rate of change of the Lorentz factor, � = E/(mec
2),

d�/dt = 1.27⇥ 10�9(�2 � 1)(Be↵/G)2 s�1
. (13)

In section 4 we will need variation of � with distance d�/dr = 1.2d�/ds = [1.2/(hµic)]d�/dt. In what
follows we use the dimensionless distance x = r/R� so that for B(r) = B0x

�� we can write B
2
e↵ =

[Bph(R�
+)]2[h(x) + ⇣x

�2�], where ⇣ = [B0/Bph(R�
+)]2 = (B0/10.5G)2. Thus, we obtain

d�(r)/dx = 7.8⇥ 10�7(�2 � 1)(h(x) + ⇣x
�2�). (14)

We note the following three important aspects of the above loss rate. 1. For B0 ⇠ 10 IC and synchrotron
losses will be comparable near the Sun, but since � ⇠ 2, IC losses will dominate at larger distances. However,
since most of the radiation is produced near the Sun the IC energy emission in gamma-rays and synchrotron
in UV-X-ray range will be comparable. 2. For free streaming relativistic electrons near the Sun (x ⇠ 1),
��/� ⇠ 1 for TeV electrons, so that energy losses cannot be ignored. In addition, as shown below the
free streaming assumption is not correct and particles take longer time to reach the Sun and hence lose
more energy. 3. The IC loss rate ignores the Klein-Nishina (K-N) e↵ect, which reduces the rate at � >

�KN ⇠ mec
2
/✏ph ⇠ 5 ⇥ 105. For photon energy ✏ph ⇠ 1 eV, approximately by a factor fKN ⇠ 1/(1 + t

2) or
1/(1 + t)3/2) according to Hooper et al. (2017) and Moderski et al. (2005), respectively with t = �/�KN,
indicating than K-N e↵ect can be ignored for electron energies below few 100 GeV. Numerical calculations
by Orlando (2008) shows that at fKN ⇠ 0.5 for TeV electrons. We will ignore K-N e↵ects in this preliminary
analysis of the transport.

3
Bremsstrahlung losses may become important below the photosphere, which will not be of interest here. Bremsstrahlung

may also be more important than synchrotron at distances � 1 AU and low energies where all losses are negligible.
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3.1.2. Advection and Crossing Time

The second term in Equation (11) describes particle advection and can be characterised by the crossing
time across a source of size L as ⌧cross ⇠ L/v. In our case we set L = s = 1.2r, and v = c to obtain

⌧cross = 2.8x s. (15)

3.1.3. Pitch Angle Variations

The final important aspect of transport involves pitch angle changes which are caused by the following
three processes.

1. Pitch angles change due to the energy loss processes of relativistic electrons is negligible. For example,
for the synchrotron process

dµ

dt
=

✓
c�T

4⇡mec
2

◆
µ(1� µ

2)B2
/� cm�1

, (16)

which is ��3 times smaller than the energy loss rate, d�
dt (see, e.g. Petrosian 1985) and can be ignored

in Equation (11).

2. The pitch angle will also change because of the convergence of the B field by the large factor of > 104

during transport from 1 AU to the Sun. This e↵ect is described by the third term in Equation (11), with
the characteristic time scale, ⌧B = 2HB/v, where the magnetic field scale height is HB = (|@lnB@s |)�1.
For a power law B(r) with index �, ds = 1.2dr, and v = c this yields the time scale

⌧B = 5.6x/� s. (17)

In the presence of such strong convergence only electrons within a narrow pitch angle range (those in
the loss cone) can reach the Sun, thus, requiring an e�cient scattering process to scatter the particles
into the loss cone that will allow transport to the Sun.

3. The third and most important cause of pitch angle change is scattering by turbulence.

As is well known, the solar wind, through witch the CRes propagate, contains high level of turbulence,
which can be the scattering agent. This process is governed by the pitch angle di↵usion coe�cient with
the characteristic scattering time or mean free path of (see Petrosian 2012 and the discussion below)

⌧sc = (3/8)

Z 1

�1

(1� µ
2)2

Dµµ
dµ and �mfp = v⌧sc . (18)

As will be shown below this time for most part is smaller than the above two transport time scales
(Eqs. 15 and 17).

3.1.4. Escape Time

The combined e↵ect of these processes determines the resident or travel time of particles at any point,
and the time for traverse from 1 AU to the Sun, denote by an escape time Tesc (r), which is a function of
the above defined time scales.
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The exact treatment of this problem requires numerical solution of the Fokker-Planck kinetic equation.
This is beyond the scope of the current paper. Here we use some approximate treatment based on some
analytic results from Malyshkin & Kulsrud (2001) and numerical simulations of E↵enberger & Petrosian
(2018). As shown in these papers, in the strong di↵usion limit, i.e. when �mfp ⌧ r andHB , or equivalently
when ⌧sc ⌧ (⌧cross and ⌧B), the pitch angle distribution will remain isotropic. First consequence of this is
that the important factor is not the large total convergence factor but the local convergence factor ⌘ =
r/HB ⇠ �/1.2 < 2, meaning the presence of a relatively large loss cone. Second, in this case we are dealing
with the well known random walk relation and Tesc ⇠ ⌧cross

2
/⌧sc � ⌧cross . More generally, in this case

one can use pitch-angle integrated (in the downward directions) quantities in Equation (11). Defining total
density N(s, E) =

R 1
�1 dµ f(t, s, µ, E) and Q̇(t, E)) =

R 1
0 dµ Q̇(t, µ, E), we obtain

@N

@t
=

@

@s
ss

@N

@s
+

@(hĖiN)

@E
+ Q̇(t, E) with ss =

v
2

8

Z 1

�1
dµ

(1� µ
2)2

Dµµ
. (19)

where ss is the spatial di↵usion coe�cient related to the scattering time (or mean free path) as ⌧sc =
3ss/v

2. We show in Appendix D, that if one ignores the energy loss term, which is the common practice,
this equation can be solved approximately, yielding spectral variation that is quantitatively di↵erent than
the one derived using the modulation approach.

There are no simple analytic solutions when the energy loss term is included. However, simple dimen-
sional argument, or spatially integrated version of this equation, known as the leaky box model, implies
that, in the strong di↵usion limit, ⌧sc � ⌧cross , time spent in a region of size L, or the escape time
Tesc ⇠ L

2
/ss ⇠ (⌧cross )2/⌧sc , as deduced from the random walk problem. In the opposite weak di↵usion

limit (⌧sc ⌧ ⌧cross ⇠ ⌧B), the particles are reflected and can escape toward the Sun only when scattered
into the loss cone. Thus, the escape time becomes proportional to the scattering time, and as shown in the
above papers the proportionality constant is equal to the logarithm of convergence factor ⌘ = �/1.2. The
numerical simulations of E↵enberger & Petrosian (2018), based on the Fokker-Planck equation, show that
the following relation, similar to Malyshkin & Kulsrud (2001) equation, provides an excellent approximation
for the isotropic pitch angle scattering rate and isotropic distribution of the injected particles:

R(r, �) = Tesc /⌧cross = ⌧cross /⌧sc + 2⌘ + ln ⌘(⌧sc /⌧cross ) with ⌘ ⇠ �/1.2. (20)

The first and third terms on the right hand side describe the above two limiting cases that are connected by
the middle term with R nearly constant (independent of scattering time) and close to the minimum value,
Rmin = 2(⌘ +

p
ln ⌘) (at ⌧sc = ⌧cross /

p
ln ⌘), which varies from ⇠ 3 to 6 for � = 1.5 to 2.6.

This equation involves the three time scales defined above, which vary with distance from the Sun, with
the critical variable being the mean free path, or the scattering time, ⌧sc , that depends also on particle
energy. As described below it depends on the energy density and spectrum of the turbulence, in addition to
magnetic field and gas density in the solar wind.

This procedure allow to separate the implicit dependence on distance of N(s, E) (described in Appendix
D) and energy dependence described next. The upshot of this is that the transport time, Tesc , of CRes is
longer than free crossing time, ⌧cross , which, as stated above, increases the energy losses by the factor R(r, �),
and directly a↵ects spatial dependence.
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3.2. Energy Loss Enhancement Factor

The Energy loss enhancement factor (ELEF) depends on the three time scales defined in previous section,
⌧cross , ⌧B , ⌧sc . The first two are well defined given B(r). Evaluation of the third is more complicated because
there are no direct measurements of �mfp or ⌧sc , so we have to rely on theoretical models of turbulence-particle
interaction rates, which, in addition to B(r) and background particle density, n(r), requires measurement of
the characteristics of turbulence and its variation with distance.

3.2.1. Characteristics of Turbulence

Over the last two decades there have been several in situ measurements of the intensity and spectrum of
turbulence, W(k), around 1 AU by near-Earth instruments (see, e.g. Leamon et al. 1998, 1999; Bruno and
Cordone, 2013). More recently observations by PSP (Chen et al. 2020) have extended this information from
1 to ⇠ 0.1 AU. In Appendix A we summarize these measurements, ending with a parametrized form for the
turbulence energy density and its variation with distance from the Sun, W(r, k) = Wturb(r)k�q, where q is
the spectral index in the inertial range, kmin < k < kmax. Measurements around 1 AU indicate that q = 5/3
(Kolmogorov) but PSP measurements indicate a gradual variation from q = 5/3 to Iroshnikov-Kraichnin
(I-K) index of q = 3/2 between 0.3 to 0.2 AU. In our analysis we will use both these models plus a model
with q = 2 that stands for the free transport case (i.e. unhindered by the B field variation or turbulence).
We fit the observed spatial variation to a power law for the outer region (r � 20R�). The result, shown by
the solid blue line in Figure 6, is

Wturb(r) = W0(r/R�)
��tr , with �tr = 3.1, W0 = 0.033 nT2

. (21)

For the inner region we use a combination of extrapolation of the above expression and some theoretical
results. In Appendix A we also present expression for the ratio of turbulence to magnetic energy densities,
fturb = Wturb(r)/B2(r) needed below.

3.2.2. The Scattering Time

Theoretical models of wave-particle interaction rates determine the scattering time, which depends in
a complicated way on several variables and parameters related to B(r), n(r) and W(r, k). As shown in
Appendix B there are two main parameters. The first is the ratio of plasma to gyro-frequencies, ↵ ⌘
!p/⌦ /

p
n/B, a measure of the degree of magnetization or the Alfvén velocity in units of the speed of light,

�A = vA/c; for protons ↵p = 1/�A, for electrons ↵e =
p

(me/mp)/�A. The second is the characteristic
wave-particle time scale ⌧p or the rate (see, e.g. Dung & Petrosian, 1994)

⌧
�1
p = (⇡/2)⌦fturb(q � 1)�(q�1) with � = ckmin/⌦ = fmin/(�A⌫B), (22)

with electrons gyrofrequency ⌫B = ⌦e/(2⇡) = 2.8 ⇥ 106 Hz. At low energies and high magnetization
(↵e < 1) electrons interact with many plasma waves complicating the results (Pryadko & Petrosian 1997,
1999; Petrosian & Liu 2004). However, for relativistic electrons, with Lorentz factor � > mp/me, and low
magnetization (i.e. ↵e � 1 or �A ⌧ 1, which is the case in the solar wind), electrons interact only with low
frequency (or small k) Alfvén waves, with the dispersion relation !(k) = vAkk, for parallel propagating waves,
and with fast mode waves, !(k) = vAk, for perpendicular propagating waves, both kind of which are present
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in the solar wind. In this case the energy dependence of scattering time simplifies to ⌧sc (r, �) = ⌧sc ,0(r)�2�q,
where, as shown in Equation (46), ⌧sc ,0(r)/⌧p = 1.6, 2.6, and 3.9 for q = 3/2, 5/3, and 2, respectively. Using
the observed characteristics of the turbulence in the outer region and its extrapolation to the Sun, and the
three models of B field, we can calculate the ratio ⌧cross /⌧sc and the ELEF R(r, �) = Tesc /⌧cross . As shown
below, in most part we are in the strong di↵usion limit so that R(r, �) = ⌧cross /⌧sc .

The radial variations of R(r, � = 1) = ⌧cross /⌧sc ,0 (modulo the value of ⇠ defined in Appendix B) are
shown in the left panel of Figure 2. As evident, the extrapolation of the outer region curves to the Sun lies
roughly half way between the widely di↵erent inner curves due to di↵erence in the B filed models there. For
example, this ratio is 50(600) for q= 5/3(3/2) at the Sun. These values, and the radial variations are not
too dissimilar to the theoretical estimation of the mean free path by Fichtner et al. (2012), shown by the
dotted line. As evident for most part this ratio is greater than 1 so we are in the strong di↵usion limit
and the ELEF can be approximated as

R(r, �) = ⌧cross /⌧sc = R0(r/R�)
✏
�
(q�2)

. (23)

From the description of derivation of this ratio given in Appendix B it is easy to show that R /
⌧cross W0(r)k

(q�1)
min /B

q so that (for ⌧cross / r and kmin / 1/r) ✏ = 2 � �tr + q(� � 1), which gives ✏ =
0.25, 0.40 and 0.70 for q = 3/2, 5/3 and 2, respectively. With this extrapolation to r = R�, and setting
⇠ = 0.04 we obtain R0 = 3000, 200 and 1, respectively. However, for q = 2 we will use ✏ = 0.0 as a proxy for
the free transport case ignoring scattering and field convergence e↵ects. We note that ELEF decreases with
energy and the assumption of strong di↵usion limit will not be valid at energies � > �max = (R0x

✏)1/(2�q).
However, even at the photosphere �max ⇠ 4⇥ 106 and ⇠ 2⇥ 106 for q = 3/2 and 5/3, respectively. For q = 2
the ELEF is independent of energy but because of field convergence e↵ect we may be in the middle region
of equation (20), with R0 = Rmin ⇠ 3, a value larger than 1, so our value of R0 = 1 for q = 2 gives the
absolute minimum e↵ect of the energy loss on the spectrum.

It should be noted that the above values of ELEF parameters are uncertain because of absence of
measurements of turbulence characteristics at r < 20R�. Thus, the results presented below based on these
parameters should be considered as a representative of range of the possible e↵ects of the energy loss. Our
main goal, to be dealt with in upcoming papers, is to use Fermi and RHESSI observation for constraining
these parameters.

4. CRe Spectral Variation and Resultant Radiation Flux

As described above, CRes with the spectrum observed at 1 AU are guided along B fields following Parker
spirals) to the Sun maintaining the isotropic pitch angle distribution because of scattering by turbulence.
This process changes (1) their energy loss rate and thus their spectra, and (2) their number density because
of the reduction of their bulk flow and focusing by converging magnetic fields.
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Fig. 2.— Left: Spatial variation of the ratio ⌧cross /⌧sc ,0 = R(r/R�, � = 1) (modulo the scaling factor
⇠
1/2) for I-K model with q = 3/2, Kolmogorov with q = 5/3, and free transport approximation q = 2.
Note that the ratio R(r, � = 1 is very di↵erent for the three models at � = 1 but because of di↵erent
energy dependence of the models the di↵erences at the relevant energies 104 < � < 106 is much smaller.
Right: Radial variations of A(r/R�, �) defined in Equation (28), for three values of � and three values of
q; q = 3/2, ✏ = 0.25, R0 = 3000, q = 5/3, ✏ = 0.40, R0 = 200, and q = 2, ✏ = 0, R0 = 1.0. As evident the
di↵erences between the models at high energies is smaller.

4.1. Energy Loss Rate and CRe Spectral Variations

The energy loss rate given by Equation (12) is enhanced by the factor R(r, �). Thus, multiplying the
energy loss rate given in Equation (14) by R(�, r) in Equation (23) we obtain

d�/�
q = 7.8⇥ 10�7

R0g(r/R�)d(r/R�), g(x) = x
✏(h(x) + ⇣x

�2�) (24)

Integrating this for an electron with initial Lorentz factor �0 at 1 AU (xau = 214) gives the variation of
Lorentz factor with distance as

�
(1�q)(r) = �

(1�q)
0 + CG(r/R�) with G(x) =

Z xau

x
g(x)dx; C = 7.8⇥ 10�7(q � 1)R0. (25)

There is no simple analytic expression for G(x). For this purpose we set h(x) = 0.5(x�2 +x
�n), with n � 1

to account for the sharp increase of h(x) as x ! 1. Using this form, which gives identical value for G(1) for
n = 8, we obtain

G(x) = 0.5[H(1�✏) +H(n�1�✏)] + ⇣H(2��1�✏) with Ha = (x�a � x
�a
au )/a. (26)

From this we obtain

�0 =

✓
�

[1�A(x, �)]1/(q�1)

◆
and

d�0

d�
=

✓
�0

�

◆q

, (27)
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where we have defined the critical function

A(x, �) = CG(x)�(q�1)
, (28)

which is shown in Figure 2 (right) for ⇠ = 0.04, three values of q, and Lorentz factors � = 106, 105 and
104. As evident this crucial factor has similar distance dependencies for the three models. However, the
dependence on energy (or the Lorentz factor) is more variable.

Given A(x, �) we obtain the spectral variation with r of CRe density4 as N(�, r) = N(�0, r)d�0/d� =
N(�0, r)(�0/�)q. Setting the energy dependence of N(�0, r) to the observed spectrum at 1 AU given in
Equation (9), (and changing E to �) we obtain the spectral shape at di↵erent distances inside 1 AU, due to
energy loss as5

N(�, r) = N0(r)

✓
�

[1�A(r/R�)]1/(q�1)

◆
[1�A(r/R�)]

�q/(q�1)
, (29)

where N0(r) describes the spatial variation, with N0(r = 1AU) = N0 defined below Equation (9). The
(correction) term in the square brackets will be more important at higher energies and closer to the Sun
with maximum value at the photosphere with Gmax = G(1) = 0.5/(1�✏)+0.5/(n�1�✏)+⇣/(2��1�✏) ⇠ 1.

4.2. Spatial Variations

As mentioned above the spatial variation is a↵ected by two processes. First, in the regions where
gyro-radius is smaller than B field scale height HB (i.e. r < rcr), the convergence of field lines toward
the Sun focuses the particles, so that their number density in a bundle of field lines increases inversely
with cross sectional area, A(r), of the bundle and N0(r) / 1/A(r) / r

�2 for radial or Parker spiral field
lines. Second, interactions with turbulence changes the CRe residence time, or the escape time, Tesc .
This changes the normalization by the ratio Tesc /⌧cross , which in the strong di↵usion limit is equal to
⌧cross /⌧sc ,0 = R0(r) = R0(r/R�)✏. The combine e↵ect then yields

N0(r) = N0(rcr)

✓
A(rcr)R0(r)

A(r)R0(rcr))

◆
= N0(rcr)(r/rcr)

✏�2
. (30)

As shown in Appendix D, this spatial variation can be derived by integration of Equation (19) over the
volume of a bundle of field lines.

4.3. CRe Spectarl Variation

Because of the uncertainty in value of rcr, here we focus on e↵ects of commonly ignored energy loss
which gives the dependence of flux on energy setting N0(r) = N0. Inclusion of the spatial variation in
Equation (30) will scale the energy spectra by (r/rcr)✏�2.

In Figure 3 we show spatial variations of the CRe spectra flux, F (�, r) = cN(�, r), from 1 AU to the

4
We use number density rather than flux since in calculating emissivity in Eq. (1) we need number density.

5
Note that we require A(x, �) > 1, which means the spectra at small distances ! 0 for � = �max ⌘ [CG(x)]1/(q�1)

.
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photosphere6 for three models of the transport and two scenarios of the B field structure (Patzold and PSP)
described in Equation (4). First we consider the free transport case ignoring scattering and field convergence,
which means we set q = 2, R0 = 1.0 and ✏ = 0. The results are shown on the left panel of Figure 3, which
represent the minimum e↵ect of the transport on spectral variation. We also show spectra for two more
realistic models of turbulence; The I-K model with q = 3/2, R0 = 3000, ✏ = 0.25 in the middle panel, and
Kolmogorov with q = 5/3, R0 = 200, ✏ = 0.40 in the right panel.

Fig. 3.— Variation with distance of the spectrum of Cosmic Ray electrons from 1 AU (black line fitted
to observed AMS02 and HESS points) to the Sun, at several distances obtained from Equation (29). The
top curve shows an analytic fit to the observed data described by Equation (9). The red-solid and blue-
dashed curves show spectra for the two specified models of the B field: Left: q = 2, R0 = 1.0 and ✏ = 0.0,
which means we are ignoring scattering and field convergence e↵ects. Middle for Kolmogorov model with
q = 5/3, R0 = 200 and ✏ = 0.40 and right for I-K model with q = 3/2, R0 = 3000 and ✏ = 0.25; see Figure 2,
left.

As evident the most pronounce loss and modification of spectra occurs near the Sun. For a closer
comparison of spectra for di↵erent turbulence models, on left panel of Figure 4 we show, for two models of
the B field, the spectra at the photosphere for the three models of turbulence used in Figure 3. On the right
panel, we show spectra for smaller values of the critical parameter, R0 = 2000 and 130 for q=3/2 and 5/3,
respectively, to demonstrate the possible range of spectra.

It should be noted that there are some uncertainties in the value of the three primary model parameters,
B0, ✏ and q, used here, in addition to the uncertainty in the normalization values discussed above (Eq. 30).

Substituting these electron spectra in Equation (1) one can calculate the spectra of synchrotron and IC
emissivities, ⌘(⌫, r), as a function of distance from the Sun, for appropriate interaction cross sections, which
depend directly on the variations with r of the B field and optical photon energy density, respectively.

6
As described in §(3.1), the kinetic equation used here is only approximately true at high energies in the outer r > rcr ⇠ 10R�

region. However, as seen in these figures most of the variation of spectra occurs in the inner region where the kinetic approach

is required.
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Fig. 4.— CRe spectra at the photosphere for two B field models (PSP and Patzold). Left, for the three
models of turbulence with characteristics given in Figure 3 and right, for di↵erent values of the critical
parameter R0 = 2000, 130 for q = 3/2 and 5/3, respectively

.

Fig. 5.— Geometry of calculation of the expected radiative flux at the Earth.
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4.4. Expected Radiative Flux at 1 AU

The observed flux of radiation at Earth at the distance 1 AU from the Sun will depend on the angle
✓ between the observation line of sight and the Sun-Earth connection and angular area d⌦ = sin ✓d✓d�,
depicted in Figure 5. The total flux will be an integral over the line of sight;

F (⌫, ✓)�⌦ =

Z 1

0

⌘(⌫, r)(dV/dl)

4⇡l2
dl =

d⌦

4⇡

Z 1

0
⌘(⌫, r)dl, (31)

where the volume element dV = A?dl yielding (dV/dl)/(4⇡l2) = (d⌦/4⇡), and r
2 = a

2 + l
2 � 2al cos ✓,

where a = 1AU. From this we find dl/dr = ±r/

p
r2 � a2 sin2 ✓, with the minus sign for the integral from the

Earth, l = 0 to l = l0 = a cos ✓ (or r = a to r = a sin ✓ = l0 tan ✓), and the plus sign for l = l0 (r = a sin ✓)
to, in principal, infinity but in practice we can use lmax = 2a cos ✓ (or rmax = a) as the upper limit, since
most of the radiation will come from the vicinity of the Sun. This makes the two integrals equal yielding

F (⌫, ✓)�⌦ =
�⌦

2⇡

Z a

a sin ✓
⌘(⌫, r)

rdrp
r2 � a2 sin ✓2

. (32)

Thus, to calculate the expected radiation fluxes from the solar disk and around it we need the electron
spectra, N(�, r) from 1 AU to the Sun. For the azimuthally symmetric situation at hand, we integrate over
� to obtain �⌦ = 2⇡ sin ✓d✓, and using the dimensionless distances x = r/R�, xau = a/R� = 214 = 1/ sin ✓0,
we then obtain

F (⌫, ✓)�⌦ = R�(sin ✓d✓)

Z xau

xau sin ✓
⌘(⌫, x = r/R�)

xdxq
x2 � x2

au sin
2
✓

. (33)

4.4.1. Flux From the Solar Disk and Beyond

For emission at the photosphere (i.e. ✓  ✓0), we see only half of the flux because of the high optical
depth of the Sun, and the lower limit of the integral, xau sin ✓ = 1 independent of ✓. Thus, we can change
the order of integration, first integrating over the angle ✓ from 0 to ✓0 and obtain the flux from the whole
disk

Fdisc(⌫) = (1/2)R�

Z xau

1
⌘(⌫, x = r/R�)xdx

Z ✓0

0

sin ✓d✓q
x2 � x2

au sin
2
✓

, (34)

Since ✓0 ⌧ 1 we can set sin ✓ = ✓, in which case the integral over ✓ can be carried out easily yielding

Fdisc(⌫) = (1/2)R� sin2 ✓0

Z a/R�

1
⌘(⌫, x = r/R�)x(x�

p
x2 � 1)dx, (35)
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with (1/2)R� sin2 ✓0 = 7.6 ⇥ 105 cm. At the photosphere the emission increases by a factor of 2.7 For
radiation from regions larger than the Sun, the angle integrated flux can be obtained as:

F (⌫, < ✓) = Fdisc(⌫) +

Z ✓

✓0

F (⌫, ✓0) sin0 ✓d✓0, (36)

where F (⌫, ✓0) is given in Equation (33).

In Summary, given the radiation emissivity ⌘(⌫, r) and spectral variation of CRe spectrum, Eq. (29), we
can obtain the expected fluxes from the disk, Equation (35), and areas larger than the disk from Equation
(36).

5. Summary and Conclusions

CRs are observed in great details by the near Earth instruments around 1 AU and beyond in the outer
heliosphere, but there are scant measurements of CRs in the inner heliosphere. However, CRs interacting
with solar gas and fields can produce high energy radiation mainly in the gamma-ray range (observed first
by EGRET instruments on board CGRO and in greater detail by the Large Area Telescope on board Fermi)
involving well known emission processes during the quiet phases of the Sun (QS). Interpretation of these
emission processes requires a knowledge of the flux, spectrum and other characteristics of CRs in the inner
heliosphere (inside 1 AU), which requires an accurate treatment of the transport of CRs from 1 AU, where
these characteristics are known, to the Sun.

The past interpretations of these radiation have treated the transport of CRs using a phenomenological
modulation method (see, review by Orlando & Strong (2021)), which has had some success treating transport
of CRs from outer boundaries of the solar wind to 1 AU. The primary physical process a↵ecting this transport
is the interaction of CRs with turbulence in the solar wind, but in the inner heliosphere other e↵ects such as
presence of a strong guiding magnetic field and, for CRes, energy losses become dominant. The modulation
methods do not treat these aspects. In particular, to best of our knowledge, the important role of energy
losses has not been treated quantitatively.

The aim of this paper is the development of an algorithm for this analysis with focus on the transport
of CRes. It is well known that CRes interacting with solar optical photons near the Sun produce some of
the observed gamma-rays via the IC process (Abdo et al. 2011). Our results can provide a more accurate
treatment of this radiation. On the other hand, there has not been any estimate of possible synchrotron
radiation by CRes spiraling along magnetic field lines. Our eventual goal is an accurate calculation of
the synchrotron emission using the transport method we have developed in this work. Observation and
interpretation of the synchrotron emission by CRes is best carried out during QS when, as we have shown,
synchrotron emission near the Sun is expected to be mainly in the extreme ultraviolet (EUV) to hard X-ray
(HXR) range. Observation by RHESSI (Hannah et al. 2010) has provided a robust upper limit on the QS
flux in the X-ray band from 3 to 100 keV, which can constrain the predictions of the synchrotron model.

Below we give a brief summary of the salient aspects of our paper relevant to the transport of CRe from
1 AU to the Sun.

7
For emission near the limb one must consider optical depth e↵ects which depends on the energy of emitted photons. In

general the optical depth decreases rapidly above the photosphere except at radio regime where synchrotron self absorption

and free-free (or bremsstrahlung) absorption may remain significant to a larger distance.
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1. We show that treatment of transport requires kinetic approach because for prevailing B fields, especially
closer to the Sun, the gyroradius of ¿ GeV electrons is smaller than the B field scale height so that
CRes are tied to the strong guiding field and spiral around them losing significant amount of energy
(and producing synchrotron radiation). This transport can be treated by the Fokker-Planck equation
including three main ingredients; B field convergence, synchrotron and IC energy losses, and scattering
by turbulence. The first two require structure of the amplitude magnetic field and variation of well
known photon energy density. The last requires spatial variation of the energy density and spectrum
of turbulence.

2. Several instruments, in particular PSP, provide in-situ measures of B field down to about 0.1 AU,
and there are several indirect estimates of the B field inside this region. We use a combination of
these measurements described in §2.1. For IC energy loss we use solar photon energy variation derived
by Orlando & Strong (2008). Several earlier in-situ measurements describe the characteristics of
turbulence at around 1 AU and PSP has extended these measures to about 0.1 AU. We have no
measurements below this so we rely on extrapolation and some theoretical calculations in this region.

3. Instead of solving the kinetic equation numerically we use a simpler method based on numerical sim-
ulations by E↵enberger & Petrosian (2018), which accounts for field convergence and pitch angel
di↵usion, Dµµ, due to scattering with turbulence. This method introduces the concept of resident
time or escape time, which allows to separate determination of the spatial and spectral variations. In
addition, the ratio of the escape to free crossing time enhances the rates of synchrotron and IC energy
losses, and reduces the overall density of the CRes. The density, however, increase toward the Sun, in
regions where gyro radius is small, due to focusing e↵ect of the converging field lines. This critical time
scale, described in Equation (20), depends on the free advection or crossing time, ⌧cross , on B field
scale height, HB , and the mean free path, �mfp, or scattering time, ⌧sc = �mfp/v ⇠ h1/Dµµi, which is
the most critical scale.

4. In general, the mean free path or scattering time depend on characteristics of turbulence, plus B

field and plasma density, in a complicated way. However, for relativistic electrons, which interact
mainly with low frequency Alfvén or fast mode turbulence, this relation is considerably simplified and
depends on two parameters; the Alfvén speed and a interaction rate (or time scale) that bundles several
turbulence and B field parameters into one, described by Equation (22), which varies with distance in a
complicated way. The detailed descriptions of variation with distance of turbulence characteristics and
calculation of this critical time scale are given in Appendices A and B. These results are summarized
in Figures 2 (left) and 6. The energy dependence in the relativistic regime is simple with ⌧sc / �

2�q,
where q is the power law index of turbulence in the inertial range, and according to PSP measurement
it varies from Kolmogorov (outer region) value of 5/3 to I-K value of 3/2, from about 0.3 to 0.2 AU.

5. We use both of the above models and a third with q = 2 to account for free (una↵ected by B field and
turbulence) transport case, which shows the e↵ects of energy loss alone, and calculate the spectral and
spatial variation with distance of the CRe spectrum and density (or flux) from their measured values
at 1 AU to the Sun. The spatial variation derivation is detailed in Appendix D.

6. These spectra can be used to calculate the emissivity of synchrotron and IC emissions, as described in
§2, and the expected radiation flux at 1 AU from the disk of the Sun and regions around it, described
in §4.4.

In forthcoming papers, using these models of transport and resultant CRe spectra, we will calculate the
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IC spectra more accurately than done previously, and the synchrotron spectra for the first time. These can
then be compared with observations by Fermi-LAT and RHESSI.

The work of VP is supported by NASA Living With Star program grant NNH20ZDA001N-LWS. E.O.
acknowledges the ASI-INAF agreement n. 2017-14-H.0, the NASA Grant No. 80NSSC20K1558.

6. Appendix A: In Situ Measurements of Turbulence

In this section we summarize three in situ measurements of intensity and spectrum of turbulence in the
frequency range of 10�5

< f < 1 Hz, with corresponding wave numbers k = 2⇡f/vA. Most of these show
a Kolmogorov spectrum, with power-law index q = 5/3 in the inertial range (fmin < f < fmax). There
is generally some steepening above, and most measurements show a distinct spectral flattening below this
range with index q ⇠ 1 down to measured limit of flim ⇠ 10�5 Hz. We need to calculate the total energy
density of turbulence Wturb =

R f1
flim

W(f)df . Assuming that to spectrum below fmin extends to flim with
index q = 1, it is easy to show that

Wturb = fminW(fmin)
1

q � 1

h
1� (fmin/fmax)

(q�1) + ln(fmin/flim)
i
. (37)

Leamon et al. (1998. 1999) measure a Kolmogorov spectrum (q = 5/3) at ⇠ 1 AU with the specific
energy density of W(fmin) = 103 (nT)2 Hz �1, in the inertial range fmin = 10�3

, fmax = 0.1 Hz. The
spectrum steepens to q ⇠ 3 above 0.1 Hz. This yields a total turbulence energy density of W(f > fmin) ⇠
1.5(nT)2. They do not provide any measurements below fmin, but extending this to flim = 10�5 yields
Wturb ⇠ 7 (nT)2.

Bruno and Carbone (2013) show the Helios measurements at r = 0.9, 0.7 and 0.3 AU, with Kolmogorov
spectrum between f = 0.1 and fmin, which decreases slightly with distance. Below fmin the spectrum flattens
to q ⇠ 1 down to flim = 2⇥ 10�5 Hz. From these we obtain

W(f > fmin) =

8
>><

>>:

5.0 nT2
fmin = 6⇥ 10�4 Hz, r = 0.9AU

15.0 nT2
fmin = 2⇥ 10�3 Hz, r = 0.7AU

156 nT2
fmin = 5⇥ 10�3 Hz, r = 0.3AU.

(38)

Extending to flim = 10�5 Hz, we obtain the total turbulence energy densities of

Wturb(r) =

8
>><

>>:

20 nT2
r = 0.9AU,

61 nT2
r = 0.7AU,

620 nT2
r = 0.3AU.

(39)

Recently, PSP measurements (Chen et al. 2020) have extended this information from 1 to 0.17 AU,
and in the spectral range 2 ⇥ 10�5

< f < 1 Hz, showing a gradual change of the spectral index q above
fmin = 10�3, from Kolmogorov 5/3 value at r > 0.3 AU to Iroshnikov-Kraichnin (I-K) value of 1.5 for r < 0.2
AU. In a similar manner as above, estimation based on Figure 1 of Chen et al. (2020), gives the following
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values for turbulence energy density.

Wturb(r) =

8
>>>><

>>>>:

10 nT2
fmin = 10�4 Hz, r = 0.82AU,

83 nT2
fmin = 2⇥ 10�4 Hz, r = 0.5AU,

730 nT2
fmin = 5⇥ 10�4 Hz, r = 0.3AU,

4800 nT2
fmin = 10�3 Hz, r = 0.17AU.

(40)

The break frequency, fmin, seem to increase inversely with distance as, fmin ⇠ 10�4(AU/r) Hz, with PSP
showing slightly smaller values than Helios. The values of Wturb(r) are plotted in Figure 6 showing rough
agreement between di↵erent estimates. A power-law fit to these 8 measured values yields

Wturb(r) = 12(r/AU)�3.1 nT2 = 0.033(r/R�)
�3.1G2

, 0.1 < (r/AU) < 1. (41)

We will use this relation below.

We have no information on turbulence energy density in the more critical inner region (r < 20R�).
We consider two methods of extrapolation to the inner region. In one we assume that the above radial
dependence continues to the Sun, then using the B(r) field models described in §2 we calculate the ratio of
turbulence to magnetic field energy densities, fturb(r) = Wturb(r)/[B(r)]2, needed for evaluation of ⌧sc and
ELEF (see below), to be

fturb(r) =

8
>><

>>:

0.033(r/R�)0.6 20 < r/R� < 214

0.35(r/R�)�0.2
r/R� < 20, GY11

4.7⇥ 10�4(r/R�)2.0 r/R� < 20, Patzold.

(42)

However, considering that the turbulence energy density is almost proportional to [B(r)]2 in the outer region,
it is reasonable to assume that, like the B field in Patzold model, Wturb(r) increases faster in the inner region
yielding a flatter, nearly constant fturb(r) ⇠ 0.3. We will use a combination of both these extrapolations
shown in Figure 2.

7. Appendix B: Scattering Time

The pitch angle di↵usion coe�cient, Dµµ, and hence ss and ⌧sc , can be obtained from gyro-resonance
interaction rates of particles with plasma waves of frequency ! and wave vector k, obeying the resonance
condition

!(k)� kkµv = ±⌦/�, (43)

where v, � and ⌦ are the velocity, Lorentz factor and gyrofrequency of the the particle, and kk is the
component of the wave vector parallel to the B field. The interaction rates depend on the dispersion relation
of the waves, !(k), the energy density of the waves, Wturb, its spectrum (mainly the spectral index q in the
inertial range; kmin < k < kmax), and the background plasma B field and density, n (or Alfvén velocity,
vA). However, for a power-law spectrum of turbulence, W(k) = W(kmin)(k/kmin)�q, the di↵usion rate (or
scattering time) scales with the characteristic time ⌧p or characteristic rate (see, e.g. Dung & Petrosian 1994)

⌧
�1
p = (⇡/2)⌦fturb(q � 1)�(q�1) with � = ckmin/⌦, (44)

where fraction of turbulence energy density, fturb ⇠ (�B/B)2 is given in Appendix A.
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Fig. 6.— Radial variations of CRe energy independent relevant quantities related to turbulence and scatter-
ing of the particles assuming the I-K model with q = 3/2. �(x), Eq. (47), (solid-black); turbulence energy
density Wturb, Eq. (41), in blue; turbulence to B field energy ratio, fturb, Eq. (42), in green; characteristic
turbulence rate ⌧

�1
p , Eq. (44), in red; scattering time ⌧sc ,0, Eq. (45), in magenta; and the crossing to

scattering time ratio, Eq. (50), in black. The results in the outer region are based on PSP measurements,
with extrapolation to the inner part (long dashed). The two dashed and solid lines in the inner part are
based on the two models of the B field models, GY11 and Patzold. The dotted line is based on theoretical
results from Fichtner et al. (2012).

In general, the scattering time, in addition to this scaling, depends in a complicated way on q and Alfvén
velocity (or �A = vA/c), and on particle energy and pitch angle (see, e.g. Pryadko & Petrosian 1997, 1999,
Petrosian & Liu 2004 Jiang et al. 2009). However, for high energy protons and relativistic electrons with
Lorentz factors � > mp/me, i.e. energies greater than 1 GeV, which is the case for our problem, the main
interactions are with Alfv́en waves, with the dispersion relation ! = kkvA for waves propagating parallel
to the B field and for ! < ⌦p, the proton gyrofrequency, and with fast mode waves with ! = kvA and
k ⌧ 1 for both parallel and perpendicular wave propagation. In this case the equations describing the above
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characteristics are simplified considerably, especially when �A ⌧ 1, which is the case here. As shown in
Figure 1, vA has nearly a constant value of ⇠ 500 km/s in the inner region (r < 20R�) and decreases with
distance to 30 km/s at 1 AU as vA = 30(AU/r)1.2.

As shown in Pryadko & Petrosian (1997) and Petrosian & Liu (2004) for parallel propagating waves,
the pitch angle averaged scattering time appropriate for relativistic electrons with isotropic pitch angle
distributions, and for �A ⌧ 1, is

⌧sc = �
(2�q)

⌧sc ,0 with ⌧sc ,0/⌧p =

(
2[(2� q)(4� q)]�1

q < 2

3/4� (1/2) ln�A q = 2.
(45)

Using vA = 500 km/s for r < 20R�, where most of the losses take place, we obtain

⌧sc /⌧p =

8
>><

>>:

1.6�(1/2)
q = 3/2

2.6�(1/3)
q = 5/3

3.9 q = 2.

(46)

7.1. Scaling Details

To complete the calculation of the scattering time we need to specify the numerical value of ⌧p and
its variation with distance, which depends on ⌦e (or B field), fturb, and the somewhat unknown kmin =
2⇡fmin/vA, the inverse of the largest scale of the turbulence. This length scale is related to the correlation
length of the injected turbulence and is expected to be a fraction, ⇠, of the size of the region, here ⇠ r,
defined as ⇠ = 2⇡/(kminr). The correlation length at the base of the corona, r = R�, is estimated to
be 2⇡/kmin ⇠ 109 cm implying ⇠ ⇠ 0.03. The correlation length most probably increases with distance.
PSP observations of decreasing fmin ⇠ 10�4(AU/r) in the outer regions seem to agree with this. Using
fmin ⇠ 2 ⇥ 10�3 and vA = 500 km/s at r = 20R� yields ⇠ ⇠ 0.04. For now we will keep ⇠ as a free
parameter.

Using the general magnetic field model of B(r) = B0x
��, with x = r/R� we obtain

�
ckmin

⌦e
= �0

x
��1

B0
= �0

8
>><

>>:

1.0x0.9 20 < x < 214

3.3x0.5 1 < x < 20 BY11

0.12x1.6 1 < x < 20 Patzold,

(47)

with �0 = 1.5⇥ 10�7
/⇠ ⇠ 3.7⇥ 10�6. PSP observations indicate that the spectral index changes from 5/3

to 3/2 between 0.3 and 0.2 AU. We are not aware of any direct measurement of the index closer to the Sun
where the energy loss rate is most significant. Thus, we will consider three values of q = 3/2, 5/3 and 2.
Now substituting the above values for �, q, fturb and the magnetic field, in Equations (44) and (45) we can
calculate ⌧

�1
p and ⌧sc . For example, for q = 3/2 we obtain

⌧
�1
p = (0.04/⇠)1/2

8
>><

>>:

1.4⇥ 102(r/R�)�0.70 20 < x < 214

4.8⇥ 103(r/R�)�1.25
x < 20, GY11

76(r/R�)0.2 x < 20, Patzold,

(48)
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and from Equation (45) we obtain

⌧sc ,0 = (⇠/0.04)1/2

8
>><

>>:

1.8⇥ 10�2(r/R�)0.75 20 < r/R� < 214

3.4⇥ 10�4(r/R�)1.35 r/R� < 20, GY11

2.1⇥ 10�2(r/R�)�0.3
r/R� < 20, Patzold,

(49)

which for ⌧cross = 5.6x (Eq. 15) gives the critical ratio (for q = 3/2)

⌧cross /⌧sc ,0 = (0.04/⇠)1/2

8
>><

>>:

1.6⇥ 102(r/R�)0.25 20 < r/R� < 214

8.2⇥ 103(r/R�)�0.35
r/R� < 20, GY11

1.3⇥ 102(r/R�)1.3 r/R� < 20, Patzold.

(50)

Similar expressions can be obtained for the other two values of q. Left panel of Figure 2 shows ⌧cross /⌧sc ,0

for the three values of q. As evident there is a large di↵erence between the two models of the B field in the
inner region. This is due to the extrapolation of Wturb from outer to inner region, which as mentioned in
Appendix A may not be correct. Using the flatter variation of fturb in the inner region we obtain the dashed
lines which are half way between the two models of B(r). We will use these extrapolations, which give the
ratio ⌧cross /⌧sc at � = 1.

The final crucial ratio R(r, �) can then be obtained using Equation (20). However, as evident ⌧sc <

⌧cross , even at the highest energies, � < 106, especially for q = 3/2 and 5/3, implying that we are in the
strong di↵usion limit with R(r, �) = [⌧cross (r)/⌧sc ,0(r)]�(q�2).

There have been many theoretical attempts to estimate the radial and energy dependence of the above
characteristics of turbulence in the heliosphere, in particular that of the scattering time or mean free path
�mfp(r, �) = �0(r/AU)�l�(2�q). For example, Chhiber et al. (2017) present several results from MHD
simulations on the spatial variation (for r < 1 AU) of the mean free path of protons with 0 < �l < 0.6, and
�0 ⇠ 0.2 ± 0.1 AU or ⌧sc ,0 ⇠ 100 s at 1 AU, which is much larger than ⌧sc ,0 obtained from observations
shown above. Fichtner et al. (2012) give result for scattering of 10 MeV protons by Alfv́en waves showing
�mfp/r varying from 0.02 at the Sun to 0.01 at 1 AU. Based on results from Petrosian & Liu (2004) this
indicates a �mfp/r = 0.02�(2�q) for relativistic electrons, or ⌧sc ,0 ⇠ 0.047 s at r = R�.

The ratio ⌧cross /⌧sc ,0 for the Fichtner model is also shown on the left panel of Figure 2, which lies
between q = 3/2 and 5/3 cases. The actual e↵ect of the transport coe�cients is better demonstrated by the
term A(x, �) defined in Equation (28) shown in Figure 2 (right) for the three values of q and Lorentz factors
� = 106, 105 and 104.

As evident the spatial variation of this crucial factor is similar for the three values of the index q, but
there is significant di↵erences in their energy dependencies. However, these di↵erences are much smaller For
103 < � < 106 compared to the values shown for � = 1 (left panel).

8. APPENDIX C: Perpendicular Di↵usion

In strong guiding B fields di↵usion perpendicular to the field lines can be ignored, but when scattering
mean free path becomes comparable to or larger than the particle gyro-radius, perpendicular di↵usion
becomes important. As shown in §3.1 the gyro-radius of relativistic electrons is rg = 1.3 ⇥ 103�(G/B) cm
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and the mean free path �mfp = c⌧sc = ca(q)�(2�q)
⌧p, where a(q) and ⌧p are given in Appendix B. Simple

algebra shows that
Rdi↵ ⌘ rg/�mfp = ⇡/[4a(q)]fturb(��)

(q�1)
. (51)

In the outer region (r > 20R�) with q = 5/3, a(q) = 2.6,� = �0x
0.9 and fturb = 0.033x0.6 we obtain

Rdi↵ = 1.3⇥ 10�7
�
2/3

x
1.2 (52)

so that for �  106 Rdi↵  0.8 and 0.05 for at 1 AU and r = 20R�, respectively. In the inner region
(r < 20R�) with q = 3/2, a(q) = 1.6,� = 1.2�0x

1.6 and fturb = 4.7⇥ x
2.0 we obtain

Rdi↵ = 5⇥ 10�7
�
1/2

x
2.6 (53)

so that for �  106, Rdi↵  10�4 and 0.05 at the Sun and r = 20R�, respectively.

Because we are mainly interested in the inner region the neglect of perpendicular di↵usion is well
justified.

9. APPENDIX D: Details of Density Variation

Here we use the steady state, @N/@t = 0, Equation (19). We first note that for relativistic CRes,
ss = 3v2⌧sc = 3c2⌧sc ,0�

(2�q), so that if we multiply this equation by q
(q�2), the first term in this equation

will depend only on the spatial variable and describes the implicit spatial variation N0(r). This also will
alter the energy loss rate by this factor similar to what was used in §4.1. If we now ignore the energy terms,
we can obtain a simple approximate solution for the CRe density variation by integration of the resultant
equation over the volume, dV (s) = A?(s)ds, of a bundle of field lines with cross section area, A?(s), from
the starting point s = 0, the point where kinetic equation becomes valid (r = rcr ⇠ 10R�), to any s (or
any r < rcr). We set ds = 1.2dr, ⌧cross = 1.2r/c and R0(r) = ⌧cross /⌧sc ,0 = R0(r/R�)✏ to obtain N(r) by
integration over s as:

�
(q�2)

Z s

0
A?(s)

@

@s
ss

@N

@s
ds =

3c2

1.2

✓
⌧sc ,0A

dN

dr

◆r

rc

� 3c2

1.2

Z r

rcr

N(r)
d(⌧sc ,0A)

dr
= 0. (54)

Since A(r) / r
2 and ⌧sc 0(r) / r

�sc obey simple power laws we expect a power law behavior for N(r)
and can set dN/dr = (N/r)(d lnN/d ln r), with the power law index �N = d lnN/d ln r nearly a constant.
This then allows to complete the integration, which after some algebra leads to

N(r) = N(rcr)

✓
A(rcr)R0(r)

A(r)R0(rcr))

◆
, (55)

which leads to the conjecture in Equation (29).
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